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Note 

Higher Order Two- Point Quasi- Fractional Approximations 
to the Bessel Functions J,(x) and J,(x) 

I. INTRODUCTION 

In a recent paper [l] we presented a method to obtain quasi-fractional 
approximations which improves a previously published one [2, 31. Mainly, in that 
method all the parameters of the approximation are real and straightforwardly 
determined and the accuracy is increased. This method is based on the 
simultaneous use of expansions for small and large values of the independent 
variable. The first method was described in relation to Jo(x) and for the lowest 
order of approximation. Here, we extend our results in order to include Ji(x) and 
higher order approximations to both J,,(x) and J,(x). 

As in the two-point Padt method, we use simultaneous expansions of a given 
function around zero and infinity. However, unlike the various ways of using 
the two-point Padt method [47], which use purely rational functions, our 
approximations in order to reproduce the essential singularity at infinity have a 
different structure combining a rational function with exponentials and fractional- 
order powers; this is why we call them quasi-fractional. We use the asymptotic 
expansion instead of the Laurent series at infinity. 

The resulting formulae for J,,(x) and J,(x) are approximations valid for the full 
range x > 0. Other algorithms break up the range and use a different approximation 
in each region [8-131. 

II. OUTLINE OF THE METHOD 

We want fo find approximate solutions to the Bessel Functions J,(x) (v = 0, 1) 
valid for small and large values of x. If a fractional solution, y = (C pixi) 
cc qje l, is substituted in the usual Bessel equation and we try to find the 
parameters pi, qj through the highest power of the variable, we get p,qn = 0. The 
latter would mean either pn or q,, equal to zero and this would lead to trivial 
solutions. To bypass this difficulty a term (1 + x)) 1’2 is factored out of the solution 
and auxiliary functions are used which are defined as 

v=o, 1; 

J,(x) = (.l +X)-I/~ [w(x) exp(ix) + w*(x) exp( -ix)] 

= (1 + .)-‘I2 [u(x) cos x + V(X) sin x] (1) 

(2) w(x) E 4[u(x) - h(x)], 
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where W(X) satisfies the equation 

x2( 1 + x)2 w”(X) + x( 1 + x)( 1 + 2ix + 2ix2) w’(x) 

+ [-vv’+(-~++-2v*)X+(~+i-v’)X*] w(x)=O. (3) 

This differential equation is now suitable for direct substitution of a fractional 
solution since the highest degree equation in x (after rationalizing) leads to a non- 
trivial solution of the coefficients. 

The power series of the function (1 + x)l’* J,(x) is 

(1 + x)“2 J,(x) = f a/$, 
k=O 

where 

(5) 

On the other hand, the differential equation (3) and the knowledge of the leading 
terms of the asymptotic expansions of J,(X), enable us to find the full asymptotic 
expansion for w(x) whereby the corresponding asymptotic expansions for U(X) and 
u(x) can be found 

u(x)= f B,x-~, u(x)= f bkX-k, (6a) 
k=O k=O 

where 

B, = 2 Re(Bk ), b, = -2 h(ak) (6b) 

Now, let the functions U(X) and u(x) be approximated by polynomial quotients of 
degree n, thus 

qx) = CY=0 pix’ 

xi”= 0 qjXi’ 

fitx) = X1=0 Pixi 

xi”= 0 qjx’ 

in which we have chosen identical denominators to get linear equations for the 
parameters. 

Hence, we try n-order fractional approximations of the type 

1 j”(X) = - 
J--c 

~~=OPiX' cos x + CY= 0 Pix’ sin x 

1 +x Ci”=o& ci”=o qp’ > ’ 
(8) 

v=o, 1. 
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We choose q. = 1. The remaining 3n + 2 parameters are determined from the 
COefiiCientS a&, Bk, and bk of the ascending Series (5) and the two asymptotic expan- 
sions (6) as 

By equating the lowest order coefficients in the above equations, a set of linear 
equations in Pi, pi, and qj is obtained. Let m be the number of equations arising 
from equating coefficients in (9), and let r and s be the analogous numbers for the 
equations coming from (lOa) and (lob), respectively. In order to get a compatible 
system of equations it is necessary that 3n + 2, the number of remaining unknowns, 
be equal to m + r + S. 

TABLE I 

Approximation Parameters for j&x) Corresponding to Different Orders n of Approximation 
together with the Maximum Value of the Error \a,,\ = jj, - .I01 for Each n 

n=l 

m=3, r=l, s=l 
I~mJ,,,I = 3.5 x 10m3 at x = 3.70 

n=2 

m=2, r=3, s=3 
ld^J,,,I=3.9~10-~atx=0.58 

n=3 

m=6,r=2,s=3 
(d^J,,,( = 1.3 x 10m4 at x = 5.00 

n=4 

m=7, r=4, s=3 
I~,,J = 2.8 x 10m6 at x = 2.40 

po= 1.00 
p, = 1.10 

po= 1.ooo 
p , = 9.406 
p2 = 6.343 

po= 1.0000 
p, = 7.8384 
pz = 6.6696 
p, = 1.4908 

po = 1.000000 
p1 = 4.637270 
pz = 5.057731 
p, = 2.120459 
Q4 = 0.3363767 

p*= 1.35 
p, = 1.10 

po= 3.550 
p, = 10.99 
pz= 6.343 

po= 3.0211 
p, = 9.4658 
p2= 7.0423 
p3 = 1.4908 

p. = 2.001837 
p, = 5.929565 
p2 = 5.598357 
p, = 2.204553 
p4 = 0.3363767 

qo= 1.00 
q*= 1.95 

qo= 1.000 
q, = 12.46 
q2= 11.24 

qo= 1.0000 
q, = 10.359 
qz = 10.831 
q3 = 2.6424 

qo= 1.000000 
q1 = 6.139108 
qz = 7.792742 
qj = 3.534836 
q., = 0.5962123 
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III. RESULTS 

The values of the best approximation parameters that we obtained for JO(x) and 
J,(x) are given in Tables I and II, respectively. Every set of parameter values is 
headed by the corresponding order, n, of the approximation. 

The figures show the differences between our approximatioEs and the exact 
functions as tabulated [12]. In Fig. 1 a plot of ten times M,,(x), defined as 
j,(x) -JO(x), is presented for the second degree of the approximation (i.e., n = 2). 
The case n = 1 has already been reported in a previous paper [ 11. J,(x) for n = 3 
and IZ = 4 is also shown. Figure 2 is analogous to Fig. 1 for a,. Plots of d^J, for 
n = 3 and n = 5 are also presented. 

TABLE II 

Approximation Parameters for j,(x) Corresponding to Different Orders n of the Approximation 
together with the Maximum Value of the Error jd^J,( = lj, --.I,[ for Each n 

n=l 

m=3,r=l,s=l 
I%,,,,,l = 3.4 x lo-* at x= 2.34 

n=2 

m=5, r= 1, s=2 
Iii3mj,,,J = 7.7 x 10M4 ar x= 4.70 

n=3 

m=5, r=3, s=3 
Id)j,,,( = 3.2 x 10m4 at x = 2.70 

?I=4 

m=5, r=S, s=4 
Iii3m,,I = 1.2 x 10m4 at x = 2.50 

n=5 

m=lO, r=4, s=3 
Id^J,,,,,I = 5.5 x 1O-6 at x = 5.80 

PO= 0.0 

PI = -2.2 

po= 0.000 

PI = - 7.509 

P2 = -4.211 

PO= 0.0000 

PI = - 34.991 
pz= -31.008 

P3 = -6.2133 

PO= 0.0000 
p, = - 114.54 
pz = - 122.74 
p, = -40.482 

p4= - 5.0249 

PO = O.OOOOOO 

PI = -21.92540 

P2 = -44.39716- 

P3 = - 33.59500 

P4= - 11.02203 

PS= - 1.367421 

p,,= 2.7 
p, = 2.2 

po= 8.009 
p1 = 10.51 
p2= 4.211 

po= 35.491 
p, = 59.995 
p2= 35.668 
p,= 6.2133 

po= 115.04 
p, = 217.04 
p2 = 154.52 
p, = 44.251 
p4 = 5.0249 

p,, = 22.42540 
p, = 62.33123 
p2 = 72.38236 
p, = 42.24611 
p4 = 12.04760 
p5 = 1.367421 

qo= 1.0 
q, = 3.9 

qo= 1.000 
q1= 12.10 
q2 = 7.464 

q()= 1.oOOO 
q1= 51.473 
q2= 53.584 
q3= 11.013 

q()= 1.0000 
q, = 188.10 
qz = 210.46 
q, = 70.639 
q4= 8.9065 

qa= l.OoOoOO 
q1 = 35.36814 
q2 = 74.59090 
q3 = 57.61484 
q4 = 19.23308 
q5 = 2.423690 
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FIG. 1. The error of the approximation J,(X) for the second, third, and fourth orders of 
approximation multiplied by adequate scale factors. 

006 I 

0041 

FIG. 2. The error of the approximation j,(x) for the first, third. and tifth orders of approximation 
multiplied by adequate scale factors. 
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IV. SUMMARY AND CONCLUSIONS 

Approximations of quasi-fractional type to integer-order Bessel functions have 
been presented which are valid for the full range x20. These are obtained by 
simultaneous use of expansions near zero and infinity. All the parameters of these 
approximations are obtained from linear equations with real coeffkients, thus 
yielding real parameters. 

The maximum errors for the first degree approximations to Jo(x) and J,(x) are 
3.5 x 10P3 and 3.4 x lo-*, respectively. The maximum errors of our highest order 
approximations, j,(x) (n =4) and j,(x) (n = 5) are 2.8 x 10P6 and 5.5 x 10e6, 
respectively. 
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